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Optimized material management in construction using
multi-layer perceptron
Farzaneh Golkhoo and Osama Moselhi

Abstract: Construction material represents a major component of the project cost. Therefore, it is essential to control material
on construction job sites. Efficient material management system requires trade-offs and optimized balance among elements of
material cost including purchase cost, storage cost, opportunity cost, ordering cost, and unavailability cost. Thus, there is a need
to develop an automated method for optimizing the delivery and inventory of construction materials not only in the planning
phase but also in the construction phase to account for introduced changes. In this research a novel genetic algorithm –
multi-layer perceptron (GA-MLP) method is proposed to generate optimized material delivery schedule. Multi-layer perceptron
(MLP) is utilized to improve genetic algorithm (GA) by generating memory to overcome local minima encountered in applying
GA for optimization. This automated method supports contractors to buy construction materials with the least cost and without
leading to material shortage or surplus. The proposed automated method has been validated through a numerical example. The
obtained results demonstrate that GA-MLP outperform GA in optimizing construction material inventory.

Key words: construction materials, construction materials management, material delivery schedule, optimization, genetic
algorithm, multi-layer perceptron.

Résumé : Les matériaux de construction représentent une composante importante du coût d’un projet. Par conséquent, il est
essentiel de contrôler les matériaux sur les chantiers de construction. Un système de gestion des matériaux efficace implique des
compromis et exige un équilibre optimisé entre les éléments du coût des matériaux, y compris le coût d’achat, le coût
d’entreposage, le coût de substitution, le coût de commande et le coût d’indisponibilité. Il est donc nécessaire de mettre au point
une méthode automatisée d’optimisation de la livraison et de l’inventaire des matériaux de construction, non seulement
pendant la phase de planification, mais aussi pendant la phase de construction, afin tenir compte des changements en cours de
projet. Dans cette recherche, une nouvelle méthode utilisant un algorithme génétique et perceptron multicouche (AG-PMC) est
proposée afin de générer un calendrier de livraison des matériaux optimisé. Un perceptron multicouche (PMC) est utilisé pour
améliorer l’algorithme génétique (AG) en générant de la mémoire pour surmonter les minima locaux qui surviennent dans
l’application de l’AG pour l’optimisation. Cette méthode automatisée aide les entrepreneurs à acheter des matériaux de con-
struction au moindre coût et sans entraîner de pénurie ni de surplus de matériaux. La méthode automatisée proposée a été
validée au moyen d’un exemple numérique. Les résultats obtenus démontrent que l’AG-PMC surpasse l’AG dans l’optimisation
de l’inventaire des matériaux de construction. [Traduit par la Rédaction]

Mots-clés : matériaux de construction, gestion des matériaux de construction, calendrier de livraison des matériaux, optimisation,
algorithme génétique, perceptron multicouche.

Introduction
Material cost can constitute 50%–60% of industrial construction

project costs (Stukhart 1995; Caldas et al. 2015) and it can control
80% of the project schedule from procuring the initial materials to
the delivery of the last item (Stukhart 1995; Caldas et al. 2015).
Despite the significant role of material management in minimiz-
ing project cost and maximizing profit, most contractors experi-
ence problems caused by poor material management processes
and encounter various issues including inaccurate warehouse re-
cords, over ordering and large surpluses of material at project
completion, poor site storage practices, material shortages, late
deliveries, out-of-specification material, and out of sequence de-
liveries, which all result in cash flow problems, low productivity,
delays and cost overruns.

In another study by Rahman et al. (2013), it was shown that “late
or irregular delivery or wrong types of material delivered during

construction affect the utilization of other resources like man-
power and equipment. Interruption to the work schedule, rework
arising from wrong or out-of-order materials, double handling
because of inadequate materials, material deterioration during
extended storage periods, expenses associated with crews lacking
proper materials, and lost items on or off site are common prob-
lems with materials in the small and medium sized construction
projects (Barry et al. 2014).

Total material cost includes major categories of cost such as
purchasing cost, storage cost, ordering cost, unavailability cost,
and opportunity cost which is the locked up capital in material
inventories. Therefore, to procure material with a reasonable cost,
there should be a trade-off among these cost categories.

It is stated that small orders, frequent deliveries, and reduced
inventories such as just-in-time (JIT) strategy are generally ac-
cepted rules of material management in the operational phase,
but in practice, larger orders are more profitable due to full load
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transportation or discounts on the prices of materials (Sobotka
2000; Shmanske 2003). So, there are some circumstances includ-
ing supply chain uncertainty, variation and uncertainty in the
production process, unavailability of materials on local market,
high inflation rates, discount on prices of large amounts of mate-
rials, and price cuts in case of early purchasing, which can make
JIT less advantageous.

To manage and control materials on the construction sites not
only a balance among cost categories has to be achieved, but also
the dynamic nature of construction projects has to be taken into
account. It can be concluded that without proper methods and
procedures, making material purchase orders by contractors or
material professionals to procure the right quantity of materials
with the right quality and the least cost without delay is impossi-
ble. Hence there is a critical need to develop an automated effi-
cient inventory control and management method to support
contractors in making decisions and taking actions on how much
and when to order materials that result in inventory at an opti-
mum level with the least costs. Even though various studies have
improved the material management process utilizing different
methods and technologies, the researchers have optimized the
total cost of inventory either at the planning phase of projects
without considering the changes occurred in the construction
phase or by using genetic algorithm (GA) as the optimization en-
gine without obviating the lack of enough diversification in the
generated populations, which is the limitation of GA.

This paper presents a newly developed automated method to
optimize material delivery schedule based on material require-
ments planning (MRP) and the least total material cost. The devel-
oped method utilized GA and multi-layer perceptron (MLP). The
proposed novel method follows up the progress as reflected in the
last up-to-date schedule to update MRP and delivery schedules
repetitively throughout the construction phase.

Background
Delving into currently available literature in the field of construc-

tion materials management resulted in dividing related researches
into two domains “construction materials management”, and “au-
tomated construction materials management”. Automated con-
struction materials management domain not only consists of the
application of automated data collection (ADC) technologies in
materials management but also computer-based materials man-
agement systems.

It can be expressed that research developments related to the
first domain “construction material management” have been ex-
panded to the following areas: (1) Site layout planning for material
storage or optimization of material procurement and storage on
site (Thomas et al. 2005; Jang et al. 2007; Georgy and Basily 2008;
Said and El-Rayes 2011, 2012; Alanjari et al. 2014); (2) Effectiveness
and performance measurement of materials management process
(Plemmons and Bell 1995; Al-Khalil et al. 2004; Wickramatillake et al.
2007); (3) Efficient materials management practices and their ap-
plied approaches, materials management problems and its influ-
ences on project productivity, cost and schedule (Formoso and
Revelo 1999; Kini 1999; Thomas and Sanvido 2000; Perdomo and
Thabet 2002); (4) Lean construction or investigating the imple-
mentation of just-in-time (JIT) strategies in construction projects
(Pheng and Hui 1999; Polat et al. 2007; Sacks et al. 2009); and
(5) Material waste management and quantification (Poon et al.
2001, 2004; Jalali 2007).

Researchers came to the conclusion that managing materials
on-site through paper documents were not practical in complex
and large-scale construction projects, and when materials man-
agement processes were executed in a consistent manner, it was
operated more efficiently. As a result, they tried to improve ma-
terials management through computerized systems and obtain
more benefits such as uniformity of documents generation, effi-

ciency, and automatic process implementation from inputting
information to report generation in a matter of hours. But a com-
puterized system alone could not ensure the accuracy of the re-
ports upon which corrective actions or various decisions were
made. In fact, the output information and reports were only as
good as the input data creating them. Consequently, they applied
automated data collection (ADC) technologies instead of manual
data collection to reduce slow, inaccurate, and excessive amounts
of collected data stored on paper to solve the issue. It can be noted
that the main applications of ADC technologies in the existing
studies are collecting material localization and tracking data at
the construction sites, and identifying unique materials received
at the job site (Golkhoo and Moselhi 2017). It should be mentioned
that the focus of this section is on the studies done in the first area
of the first domain.

Thomas et al. (1999) studied three types of structural steel erec-
tion project in which the delivery methods of material (structural
steel members) as a component of material management were
different. By quantification of labor productivity using multiple
regression technique, the best delivery method of material (steel
erection directly from the truck against two others including steel
off-loading, sorting, and then erecting, and three bulk steel deliv-
eries) was indicated. Jang et al. (2007) optimized the floor-level
construction material layout required for multiple-floor buildings
in urban areas using GA and through minimizing excessive repo-
sitioning of construction materials. This optimized floor-level
construction material layout determines how efficiently to posi-
tion the construction materials to minimize the travel distance
between work spots and construction materials. By implementing
the proposed approach in a real case, it was found that inefficien-
cies in positioning of construction materials at the floor-level
could result in 14% increase in the construction labor material
handling distance. Polat et al. (2007) proposed a simulation-based
decision support system to achieve an economical rebar manage-
ment system. They defined three differences between the just-in-
time (JIT) and just-in-case (JIC) materials management systems
including buffer size, scheduling strategy; and lot size. Then con-
sidering buffer size in terms of large, medium, and small; sched-
uling strategy in terms of optimistic, neutral, and pessimistic; and
lot size in terms of large and small, contractors were faced with
18 alternative rebar management systems between the JIT and JIC
management systems. So, through applying discrete event simu-
lation (DES), the most economical rebar management system with
the least cost of inventory at the planning stages of a project was
selected. It was found that JIC was the most economical rebar
management system in their case study with 4.8% savings of total
cost of inventory over JIT. Georgy and Basily (2008) used GA to
develop a systematic procedure for optimizing the delivery and
inventory of materials. They concluded that GA is a proper opti-
mization engine for this purpose, because the solution space for
the optimization of delivery and inventory of materials is almost
infinite, no specific number of orders is known in advance, mate-
rial requisition schedule can be represented in a string form con-
sisting of material quantities delivered at specific times, and
resembles the chromosomes used in GA as input, and finally a
near optimum solution minimizing material cost is obtained and
is acceptable for all practical purposes. They applied pure GA to
solve the problem without obtaining enough diversification in
the generated populations to escape from getting stuck to local
minima. Moreover, material unavailability cost is not considered
in the GA objective function to enable the proposed method to
take various scenarios into consideration. Sacks et al. (2009) tried
to use computer-aided visualization tools to support a set of lean
construction management requirements for both planning and
control. Lean construction requirements including making the
process transparent to all, just-in-time delivery of materials and
flexibly to respond to change were difficult to achieve in construc-
tion projects against than in manufacturing. So, they investigated
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application of visual tools such as building information modeling
(BIM)-based visualization user interfaces to achieve a clear mental
image of what was taking place and what could be expected in the
near future which supported lean construction requirements. In
the research done by Said and El-Rayes (2011) a construction logis-
tics planning model was developed in which the decisions of ma-
terial supply and site layout were optimized simultaneously to
minimize logistics costs (ordering cost, financing cost, stock-out
cost, and layout costs). The model considered interdependencies
between material supply and layout decisions and was able to
measure the impact of these decisions on project delays. Yu et al.
(2016) came up with a BIM-based dynamic model along with GA
application for planning material laydown area on construction
sites and generating optimal supply scheme. An automated mate-
rial inventory control and management system has been pre-
sented by Le (2017). Geographical Information System (GIS) and
a “hybrid” tracking system are used in this developed system.
In this developed system, identifying material needs, ordering,
transporting, storing, and tracking of materials would be possible
through having access to the materials real-time information. The
material procurement and logistics measures were investigated in
the study by Ajayi et al. (2017) to mitigate waste generated by
construction activities. They concluded that in the presence of
suppliers’ commitment to low waste measures, low waste pur-
chase management, effective materials delivery management and
waste efficient Bill of Quantity, logistic and procurement process
is waste efficient. It is expressed that commitment to a take-back
scheme, procurement of waste efficient materials/technology, use
of minimal packaging, use of just-in-time (JIT) delivery system,
and prevention of over ordering are important for mitigating
waste through material procurement processes.

In a nutshell, optimization of material procurement and stor-
age on site through regular optimization engine, integration of
the materials management processes, integration of materials lo-
calization and tracking data with the computer-based materials
management systems, positioning and tracking critical resources,
comparing as-planned and as-built status are the main subjects of
the existing studies. The developments made by the existing re-
searches have the potential to enhance efficiency in construction
material management, but a question has not been properly an-
swered by applying the existing methods. The question is: Which
material and how much of that material must be ordered and
bought on which day to result in the least cost without material
shortage or surplus?

Proposed automated GA-MLP optimization
algorithm

The proposed automated method is designed to generate opti-
mized material delivery schedules as a small component of an
automated construction material management system (MMS).
Figure 1 illustrates the first module of the MMS entitled “pre-
construction module” in which the proposed GA-MLP method has
been developed to perform its first two steps. These steps include
generating material requisition schedule and optimized material
delivery schedule. Detailed explanation of the pre-construction
module including all the steps, databases, and their inter-
relationships is out of the scope of the current paper. But in a
holistic view, in the first step “material requisition schedule”,
project schedule and material specification data stored in data-
bases are the inputs and the required quantities of each material
on each day of the construction phase is the output. The output of
each step is used as an input to the following step automatically.
So, by knowing the required amount of each material on each day,
an optimized delivery schedule for each material is generated
using the developed GA-MLP method in the second step. In the
next step, a schedule for buying materials is developed based on
material lead time, required preprocessed time, and administra-

tive time along with the optimized material delivery schedule
from the previous step. Lead time for each material is the time
between the placement of an order and the delivery of that mate-
rial which can be calculated by a probabilistic approach, prepro-
cessed time is the amount of time required in the shop to make
fabricated materials ready for transportation, and administrative
time demonstrates the time required to issue a purchase order
(PO) to a vendor. In fact, this schedule defines the dates for issuing
preliminary purchase orders for all the materials. Then according
to the issue dates of preliminary purchase orders, in the next step
“Purchase Order”, the final purchase orders are issued on the
predefined dates. Finally, in the last step, the required materials
have to be delivered, received, and checked at the construction
site based on the optimized material delivery schedules. All the
differences between planned and actual material delivery and all
other changes during construction phase are reflected in the proj-
ect schedule and then are used as an input to generate “material
requisition schedule” and “optimized material delivery schedule”.
On top of the main reports such as material requirement sched-
ule, optimized delivery schedule, and the list of issue dates of
preliminary purchase orders, the developed module can give
warnings to the contractors or material professionals about the
various due dates to prevent from material shortages and conse-
quently schedule delay.

As such the developed method is expected to assist project man-
agers to avoid early, excess, and (or) late purchasing of materials,
it also assists them to procure materials with the least cost and on
time. As stated earlier this paper focuses on the first two steps,
which are described below.

Material requisition schedule
Required steps to develop material requisition schedule are de-

picted in Fig. 2. The following information is used as inputs to this
process:

• Project schedule with high level of details (Activity level) which
is integrated with construction elements and all the required
materials are assigned to the activities on daily basis.

• Construction material data and their specifications. For in-
stance, site pre-processed time for materials requiring assem-
bly prior to installation at the construction site.

There are various variables in this proposed algorithm as follows:

• Project duration is shown by D (time unit is day).
• Materials have been shown by j and it is assumed that there are

k materials in a project, so j = 1, 2, ..., k.
• Activities have been shown by i and it is assumed that there are

n activities in a project, so i = 1, 2, ..., n.
• Since the developed algorithm has to be run on each day of the

project, it needs to know the current date which shows that the
project is on which day of its duration. The current date in
the system is shown by TC. It is obvious that the first day of the
project schedule has a special date, but it can be shown by TC =
1. So, TC = 1, 2, ..., D.

• Early start and early finish dates of all the activities are used in
this system to avoid uncertainties and they are shown by ESi
and EFi for activity i, respectively.

• The preprocessed time for the materials requiring assembly
prior to installation at the construction site is shown by Tsp. It
can be obtained from the construction material specifications
input data.

• The required amount of material j assigned to each activity i on
specific days is shown by qij.

As shown in Fig. 2, having input data, the algorithm selects a
special material and consider it as j = 1, then it starts to calculate
the total required amount of material j = 1 on each day of the
project. So the first day of the project is selected (TC = 1), and the
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Fig. 1. Pre-construction module.
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system compares the Early Start and Early Finish dates of all the
activities (from i = 1 to i = n) with TC = 1 (ESi ≤ TC and EFi ≥ TC), to
identify the ongoing activities which use material j = 1 on the first day.

Afterwards the required amount of material j = 1 relevant to the
identified activities (qij) are found and summed up (� i�1

n qij). The
calculated value � i�1

n qij must be assigned to TC = 1, but if material
j = 1 needs pre-processed (Tsp) time at the site, the calculated
value�i�1

n qij has to be assigned to TC – Tsp. It indicates that the mate-
rial j = 1 is required on the day TC – Tsp with the amount of �i�1

n qij.

All these steps are repeated for material j = 1 from the first day
of the project (TC = 1) to the last day (TC = D). The output of this
process can be represented in the form of a vector with D columns
for material j = 1 as shown in Fig. 3. The columns demonstrate the
days of the project duration and the nonzero elements of this
vector indicate the required amount of material j = 1 on those
special days. All the mentioned processes would be implemented
for all the materials from j = 1 to j = k. Finally, there would be k
vectors for k materials.

Fig. 2. Algorithm for generating material requisition schedule.
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Optimized material delivery schedule
Scheduling deliveries of materials not only can prevent mate-

rial shortages but also can minimize warehousing as much as
possible. So, to procure required materials with the least cost and
avoid from early, late, excess, and insufficient purchasing, a novel
automated method to generate optimized delivery schedule for
each material is developed.

In fact this step answers the question of having the required
amounts and dates of each material, how these materials can be
bought and delivered resulting in the least cost considering min-
imum order quantity (minimum shipping), and storage space. To
answer the mentioned question and generate optimized delivery
schedule for each material a novel integrated GA-MLP technique is
proposed and explained in detail in the following subsections:

Genetic algorithm optimization
Genetic algorithms (GAs) as the simulations of natural selection

are the earliest, most famous, and most widely-used evolutionary
algorithms (EAs) (Simon 2013). A great diversity of constrained and
unconstrained optimization problems can be solved applying GA
as a universal method (Holland 1975). In fact, genetic algorithm as
a type of optimization engine tries to find the optimal solution(s)
of a computational problem in terms of maximizing or minimizing
a particular function. Fitness functions for optimization, initial
population of chromosomes, and rules to create next generations
are the GA components. The initial population is a group of pos-
sible solutions of the given problem. GA will modify the initial
population in consecutive iterations to obtain a better solution.

As Carr (2014) stated, the way of translating candidate solutions
into chromosomes and defining fitness function are the main
elements affecting the performance of a genetic algorithm. Other
factors such as the probability of crossover, the probability of
mutation, the size of the population, and the number of iterations
can be modified regarding the algorithm’s performance through a
few trial runs. So to perform encoding of each candidate solution
of buying a special construction material during the construction
phase into chromosomes, chromosomes are employed to indicate
the various possible amount of material j = 1 which can be bought
on different days of project duration from TC = 1 to TC = D as shown
in Fig. 4. The number of genes represents the total number of time
units of project duration, and gene values indicate the amount of
material that has to be ordered and bought at that particular time.

The objective function of GA algorithm is minimizing the total
material cost. So, it is required to calculate the total cost of mate-
rial j which would be delivered based on each material delivery
chromosome. Each chromosome that leads to the lower cost can
be selected as the better solution. If the terminating condition is
not met, the obtained better solutions will be recombined using
genetic operators to breed new better solutions among genera-

tions. To calculate total material cost using objective function, the
two following scenarios have been taken in to consideration:

First scenario: shortage of material is prohibited
In fact in this scenario, encounter with material shortage is not

acceptable even if the cost of buying and storing materials in
advance results in a higher total material cost comparing the total
material cost including material unavailability cost. So, in this
scenario the objective function is considered as eq. 1. According to
the study done by Georgy and Basily (2008), total material cost
include four major cost categories, purchase cost of a material
which is the unit purchase price from a vendor including trans-
portation and freight expenses, order cost which demonstrates
the administrative expense related to issuing a purchase order
(PO) to a vendor, opportunity costs which are the losses resulted
from tied-up funds in the inventory and cannot be invested for
other beneficial purposes and finally storage cost which is the cost
related to the warehousing, handling, store workers, and equip-
ment inside the warehouse. So, through the following equations,
the total material cost can be calculated by considering the time
value of money:

(1) Minimize Total Material Cost
� Minimize (Purchasing Cost � Ordering Cost

� Opportunity Cost � Storage Cost)

(2) Purchasing Cost � �N�1

Np �d�1

LN
(Q d × Pd)(1 � i)N�1

(3) Ordering Cost � �N�1

Np
(LN × CO)(1 � i)N�1

(4) Opportunity Cost

� �N�1

Np �TC�365(N�1)�1

365N
(SQ TC

× I × Paverage)(1 � i)N�1

(5) Paverage � Purchasing Cost/�N�1

Np �d�1

LN
Q d

(6) Storage Cost � �N�1

Np �TC�365(N�1)�1

365N
(SQ TC

× Cs)(1 � i)N�1

where
Np is the total project duration in terms of year;
LN is the number of material orders/deliveries made in year N;
Q d is the quantity of material for order d;
Pd is the unit price of material for order d;
Paverage is the average unit price of material;
CO is the average administrative cost for making a single order;
SQ TC

is the stock quantity at time TC;

Fig. 3. Material requirement vector for material j.

   ….    

   … … … …    

Fig. 4. Material delivery chromosome for material j.

….

… … … … … 
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Cs is the storage cost for an individual unit quantity per unit time;
I is the interest rate per unit time;
i is the annual escalation rate;
Some input data such as purchase cost and delivery cost of

materials related to various vendors are available in databases of
the whole developed system. Since each vendor has its own price
and discounts for bulk purchases, there is a need to select proper
potential vendors to be able to calculate the total material cost for
each generated chromosome in the objective function. The asso-
ciated process of the potential vendors’ selection for the materials
is developed as well in the MMS, but its elaboration is out of the
scope of this paper. So, it is assumed that the required input data
are available to be used to calculate the total material cost.

Computing the amount of stock quantity at time TC(SQ TC
) is a

prerequisite of storage cost and capital cost calculation for each
generated material delivery chromosome at time TC. Therefore
the eq. 7 is used to calculate SQ TC

:

(7) Stock quantity at time TC(SQ TC
) � SQ TC�1 � Q TC

� qTC

where
SQ TC�1 is stock quantity at time TC − 1,
Q TC

is the material quantities which have to be ordered at time
TC which equals to Q d when order d is taken place at time TC,

qTC
is the required material quantities at time TC (These values

can be obtained from the material requirement vector for each
material; Fig. 3).

Second scenario: shortage of material is not prohibited
Contrary to the first scenario, in this scenario, material shortage

can be acceptable at different time points of construction phase if
the total material cost including the cost of material unavailability is
less than the total material cost without material shortage. So, in this
scenario the objective function is considered as eq. 8.

(8) Minimize Total Material Cost
� Minimize (Purchasing Cost � Ordering Cost

� Opportunity Cost � Storage Cost � Unavailability Cost)

As Said and El-Rayes (2011) have stated, to calculate material
unavailability cost, first step is to estimate material-related proj-
ect delay. The algorithm to calculate project delay due to material
shortage is presented in Fig. 5. In fact, when there is a delayed
delivery of a special material at a special time point of construc-
tion phase, two factors have to be defined to calculate the project
delay. First factor is identifying the ongoing activities at that spe-
cial time point consuming that specific material with their total
floats. The second factor is defining the activities among them
which cannot be completed due to material shortage after assign-
ing the ordered quantity of that specific material to the activities
with minimum total float. Since the delay of each activity and
consequently the project delay is calculated based on the material
consumption rate, so after identifying and updating the affected
ongoing activities by material shortage at different time points
(from TC = 1 to TC = D of each chromosome as a candidate solution),
the project schedule can be updated and the amount of project
schedule delay (Dp in Fig. 5) can be calculated by subtracting the
planned project duration from the last updated project duration.
As illustrated in Fig. 5, since there is k material in a project, the
mentioned process is performed for each material from j = 1 to j =
k to calculate the total material cost for chromosomes as candi-
date solutions of buying construction materials during the con-
struction phase while the material shortage is allowed.

So, according to the study done by Said and El-Rayes (2011),
unavailability cost is calculated according to eq. 9 considering
time value of money:

(9) Unavailability Cost � (Dp × Cd)(1 � i)Np

where
Cd is the cost resulted from project schedule delay due to mate-

rial shortage. It includes project liquidated damage per day and
time-depended indirect cost per day;

Dp is the project schedule overrun in terms of number of days.
It should be noted that some constraints satisfaction has to be

performed during the GA optimization to check the feasibility of
each generated chromosome. The following constraints are con-
sidered:

• 0 ≤ SQ TC
(stock quantity at time TC) ≤ Q Sj

(max storage capacity
for material j) which means there should not be any shortage of
material during the construction phase and the storage space
has to be considered as a limitation while ordering materials.
This constraint is applied in the first scenario.

• SQ TC
(stock quantity at time TC) ≤ Q Sj

(max storage capacity for
material j), this constraint is applied to the second scenario
because material shortage is not prohibited in the second sce-
nario but the storage space should be considered as a limita-
tion.

• Q TC
(material quantities ordered at TC) ≥ Q MSj

(minimum ship-
ping quantity for material j) in which Q MSj

is an integer number
showing the minimum quantity of material j which can be
shipped to the construction site. This constraint is applied in
both scenarios.

• The last constraint shows that at the end of the project, the
total quantity of bought materials must be equal to the total
quantity of required materials. In fact, there should not be
surplus quantity of material at the end of the project. So, this
constraint is applied for both scenarios and can be shown by
�TC�1

D Q TC
� �TC�1

D qTC
� 0.

Similar to a greedy optimization algorithm, in each iteration
GA selects the fittest chromosomes. In other words, without any
memory, GA makes a locally-optimal choice in each generation
with the hope that these choices could lead to a globally-optimal
solution using various operators. So, to avoid from the major
limitation of GA, which is getting stuck at local optimal values,
MLP is combined with GA to create a memory of the fittest solu-
tions previously found and improve the probability of identifying
global optimal solutions. In fact, MLP as a feed-forward neural
network has not been used in terms of a classifier, but it is inte-
grated with GA only to generate memory for GA to follow the
trend of data. Creating memory means that GA can memorize
properties of its previous generations. Since in pure GA, after
applying crossover and mutation in the current population, ev-
erything else will be removed, MLP is integrated to retain the
trend of data associated with the previous generation. The next
section is a brief explanation of MLP as a kind of artificial neural
network (ANN).

Artificial neural network (ANN) and multi-layer perceptron (MLP)
The procedure of processing information in ANNs is similar to

that of biological neural systems (Morgan et al. 1991). Neural net-
works are made up of many artificial neurons. Neural networks in
which the neurons in each layer feed the next layer as their output
until the final output is obtained are called feed-forward net-
works. As Shirvany et al. (2009) has stated, due to structural flex-
ibility, good representational capabilities and availability of a
large number of training algorithm of feed-forward networks,
they are the most popular fully connected network architectures.
MLP networks are also a kind of feed-forward neural networks in
which different transfer functions can be applied based on the
various conditions. MLP networks involve at least three layers
entitled “input layer, hidden layer, and output layer”. The archi-
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tecture of the proposed MLP includes four hidden layers followed
by sigmoid activation function. Hidden layers are not subjected
for any up or down-sampling. Based on several experiments, den-
sifying this simple architecture not only does not improve the
performance of the final model, but also is costly in runtime and
may lead to many delays in training process. Moreover, very sim-
ple architecture (i.e., with 1, 2, or three hidden layers) will not
result in reliable weight vectors.

While the application of ANN is expanding in different do-
mains, a number of ongoing researches are focusing on the selec-
tion of the ANN architecture and its efficient training procedure.
These researches are trying to combine ANN and GA to enhance
the performance of their proposed networks (Seiffert 2001;
Nasseri et al. 2008; Divya et al. 2014; Allahkarami et al. 2017). In
fact, GA is used to train and optimize the networks to increase the
accuracy and efficiency of classification and prediction done by

ANN. Back propagation training algorithm is frequently used in
ANN to adjust the weights through comparison between the de-
sired and actual network response and as Allahkarami et al. (2017)
have stated, it may trap ANN into the local minima and lead to
converging slowly. So, integrating GA with ANN can optimize the
initial weights of ANN and improve its performance. In this paper,
as mentioned earlier, MLP has not been applied as a classifier; it is
integrated with GA only to generate memory for GA to follow the
trend of data. MLP is integrated with GA in a novel algorithm to
obviate the shortcoming (local minima and the lack of memory) of
GA while generating the optimized material delivery schedule.
Each material should be considered separately from the begin-
ning, so after selecting a special material as material j, the follow-
ing procedure is performed in the proposed algorithm. The
developed GA-MLP algorithm is illustrated in Fig. 6 as well.

Fig. 5. Algorithm for computing materials-related project delay.
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Fig. 6. GA-MLP algorithm to generate the optimized material delivery schedule.
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In the first iteration (i = 1) an initial population presenting dif-
ferent possible solutions of buying a special construction material
during construction phase is generated randomly. In fact, there is
no official reasoning around initializing the proper values in GA.
But based on our experiment, using material requirement vector
can help the performance of the proposed algorithm in terms
of convergence, then MLP network is initialized with random
weights (Wi) and it is fed with the initial population from GA to
generate modified population (multiplying the initial population
with the weight vector). In other words, MLP functionality is find-
ing a regression between the current population and the previous
generation. The reason for multiplying MLP weight vector to GA
population is biasing the current chromosomes to the proper
direction, since MLP weight vectors are being updated by gradient
descent scheme and the better MLP training procedure is done,
the better generation is expected to be produced. Sigmoid func-
tion is selected as the activation function in MLP to generate the
output. Thus, on one hand the modified population (which is the
output of hidden layer) is used as an input for sigmoid activation
function to generate f(xi) as the output of MLP network and on the
other hand modified population has to be evaluated against the
objective function which is minimizing the total material cost.
The most fitted chromosome (which leads to the lower cost) is
selected as Yi and if stopping criteria is not met, the next iteration
is performed. In the next iteration (i = 2), the better individuals of
the former population are selected and recombined through ap-
plying crossover and mutation operators probabilistically to
breed new better solutions as a new population, generated off-
spring’s gene values should be checked against the constraints to
remove infeasible solutions. As GA passes through the second
iteration, MLP will get ready to start its second epoch. Though
based on the MLP concepts, epochs should be a static value to
control over fitting, in the proposed algorithm, epochs is set to be
equal to GA’s iteration as a dynamic hyper-parameter. So second
weight factor is generated by MLP randomly (Wi) and MLP is fed
with the new generated population from GA to form second mod-
ified population (multiplying the new population with the second
weight vector). Similar to the previous iteration, on one hand, this
second modified population is used as an input for sigmoid acti-
vation function to generate f(xi) as the output of MLP network and
on the other hand, modified population is evaluated against GA
objective function and the most fitted chromosome is selected
again as Yi and if the population is not converged towards a single
solution (stopping criteria is not met), the next iteration is per-
formed.

After first and second iteration or epoch as illustrated in Fig. 6,
the weight vectors should be updated for the next iteration with
respect to a specific policy as the following:

(10) Wi � Wi�1 � (�i × �i × � × Wi�1)

where Wi is the new weight vector, Wi−1 is the previous obtained
weight vector, �i is called error value which is the difference
between two previous most fitted chromosomes (�i �

��Yi�1 � Yi�2�
2). In fact the policy for computing the error is as

computing the L2-norm between the fitted chromosomes of the
current and previous generation in GA. The term �i is the differ-
ence between two previous MLP network outputs (sigmoid func-

tion output �i � ��f�xi�1� � f�xi�2��
2), and � is learning rate

(0.1 < � < 0.3). After calculating the new weight vector for each
iteration, like the previous iterations, all the following steps are
performed as a loop in consecutive iterations until an individual
chromosome reaches certain fitness.

A new and better solution as a new population is obtained
through crossover and mutation operators, and then infeasible
solutions are removed from the new population by checking off-

spring’s gene values using constraints. In the next step MLP is fed
with this new generated population to form new modified popu-
lation (multiplying the new population with the new weight vec-
tor). The term f(xi) is calculated using sigmoid activation function
as the output of MLP network as well as Yi as the most fitted
chromosome through evaluating modified population against GA
objective function. If the error value is less than its predefined
threshold, then the termination condition is met and the fitted
chromosome is selected as the optimized material delivery sched-
ule. Since there is k material in a construction project, all the steps
of the proposed algorithm have to be repeated for each material
(j = 1 to k).

It is worth noting that in this study, the selected and applied
methods for the genetic operators of selection, crossover and mu-
tation are roulette-wheel, stochastic method, and random negate
method respectively. Different stopping criteria could be defined
including a specific number of iterations, a predetermined thresh-
old of error value, and a predetermined threshold for the im-
provement value in the objective function over many consecutive
generations. In this study the algorithm comes to a point of con-
vergence when the error value is less than a specified threshold.
Finally, there would be k optimized delivery schedule chromo-
somes for k materials in which a zero value indicates that no
delivery takes place at that particular day, while nonzero values
show that there are deliveries at these days, and if materials are
delivered based on these schedules, the total material procure-
ment cost will stand at the minimum level.

Proposed GA-MLP algorithm is coded in a user-friendly compu-
tational platform using MATLAB. It can be used as a stand-alone
application or can be integrated with the other algorithms in
MMS. The developed software is a tool for generating optimized
material delivery schedule. A graphical user interfaces (GUI) in
MATLAB (Figs. 7 and 8) is also developed to simplify data entry and
reporting.

Numerical example to evaluate GA-MLP algorithm
performance

The performance of the newly developed automated method is
evaluated using a numerical example of the construction of two
office buildings. In fact, the outputs of GA-MLP algorithm are
compared with the outputs of the application of pure GA optimi-
zation in the same case. To simplify the comparison, first scenario
in which material shortage is prohibited during the construction
phase and only one material which is reinforcing steel (rebar with
diameter ≥20 mm) are selected. The project schedule shows that
the buildings have to be constructed in 64 weeks. It is worth
noting that based on the size and complexity of the project, the
developed algorithm can generate optimized material delivery
schedule on daily, weekly, and (or) monthly basis. The required
data to run GA and the proposed GA-MLP algorithm is shown in
Table 1. By having the project schedule in which materials are
assigned to the activities and by following the developed algo-
rithm shown in Fig. 2, material requirement vector is generated
and illustrated in Fig. 9 and Fig. 10. Using the input data from
Table 1 and the following parameters and by applying eqs. 1 to 7, it
is possible to run GA and GA-MLP algorithm to generate optimized
material delivery schedule for rebar:

• Population size: 200
• Number of Generations: 200
• Number of epochs: 200
• Crossover probability: 0.85
• Mutation probability: 0.06
• Termination condition: � ≤ 0.013

The following constraints have been taken into account as well:
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• 0 ≤ SQ TC
(stock quantity at time TC ≤ 200 (max storage capacity

(ton)) which means there should not be any shortage of mate-
rial during the construction phase

• Q TC
(material quantities per order) ≥ 10 (min shipping quantity

(ton)); and
• �TC�1

D Q TC
� �TC�1

D qTC
� 0, which shows that there should not be

surplus quantity of material at the end of the project.

The outputs obtained from GA-MLP algorithm run are illus-
trated in terms of optimized rebar delivery schedule (the near
optimum chromosome as the final output of the algorithm) in
combination with rebar stock level during the construction phase

(output of eq. 7) in Fig. 11. This figure indicates that in this project,
if rebar is bought according to the red columns, it will result in the
least cost, without leading to rebar shortage or surplus. It is worth
noting that the numbers in the left vertical axis related to the
optimized rebar delivery indicate that how much rebar on which
week has to be bought if a contractor or a material professional
tends to procure rebar with the least cost without any shortage
during construction phase or surplus at the end of the project. In
this optimal solution which results in the minimum cost, maxi-
mum storage space, and the minimum shipping size are consid-
ered as well. Right vertical axis specifies rebar quantity in the

Fig. 7. User interface for optimized material delivery schedule (GA-MLP). [Colour online.]

Fig. 8. User interface for GA-MLP constraints and parameters. [Colour online.]

Table 1. Case study input data.

Cost type Symbol Amount Unit

Average administrative cost for a single order CO 10 $/order
Unit price for order d pd 710 if Q d < 100 628 if Q d ≥ 100 $/ton
Storage cost for an individual unit quantity (ton) Cs 40 $/week
Weekly interest rate I 0.0003 NA
Annual escalation rate i 0.015 NA
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Fig. 9. Required material (rebar with diameter ≥20 mm) during the construction phase. [Colour online.]

Fig. 10. Rebar requirement vector (ton/day).

Fig. 11. Optimized rebar delivery schedule and rebar stock level (GA-MLP algorithm). [Colour online.]
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storage in each week. Figure 12 illustrates the optimized rebar
delivery schedule in one scenario including rebar delivery, con-
sumption and stock level. For example, it is shown that a batch of
140 tons of rebar is delivered in the first week, but there is no
rebar consumption during this week. So, the rebar stock level
remains constant (140 tons). In the second week, the rebar con-
sumption is 39 tons and because there is no rebar delivery, rebar
stock level is reduced to 101 tons. The convergence of total rebar
cost as the value of objective function in the given generation is
shown in Fig. 13. It can be seen that the total rebar cost that has
been optimized by GA-MLP algorithm in 200 generations is
$596 128. As indicated in Fig. 13, some discontinuities are com-
mon in learning or heuristic process which is not overtrained and
consequently overfitted. The only thing that matters is the fact
that the general behavior of the graph should be minimized. The
amount of error showing the performance of GA-MLP algorithm is
presented by Fig. 14. To clarify the concept of error which is mea-
sured to present the performance of GA-MLP algorithm, it should
be mentioned that, GA chromosomes are actually the coefficients
of a polynomial that maximizes our gain in the process of optimi-
zation. In other words, it should be defined that in each step
forwarding to reach the objective function, how close it has got-

ten through this function. This process is called minimizing error.
Based on this policy we move toward our desired function, the
closer we are to the function, the better approximation has been
computed by chromosomes. In fact, chromosomes are the coeffi-
cients of a polynomial; this polynomial can lead to the answer
close to zero, if we substitute it into the objective function. Since
GA-MLP is the biased version of the pure GA, we should apply
mini-batch inside of the processing algorithm to be able to mini-
mize the error. So, it should be mentioned that on X axis in Fig. 14,
the step and mini-batch size is shown, not the epoch or iteration
value and Y axis shows the scaled expected error which is the
log-likelihood of error so as to visualize the error in a better scale.

To indicate the superiority of the developed GA-MLP algorithm
over GA, first the fitness value calculated by GA-MLP is compared
to the fitness value calculated by GA illustrated in Fig. 15. The total
rebar cost that has been optimized by GA algorithm in 200 gener-
ations is $688 978 which is more than the $596 128 (the minimum
cost obtained from GA-MLP algorithm). Second, the amount of
error in both algorithms are compared and presented in Fig. 16.
Comparing the error value, it can be concluded that against the
error value in GA, the error in GA-MLP algorithm converges to-
ward zero when the mini-batch size is increasing and reaching
almost to 600.

Fig. 12. Rebar delivery, consumption, and stock level (GA-MLP algorithm). [Colour online.]

Fig. 13. Convergence of total material cost (objective function) in
the 200th generation (GA-MLP algorithm). [Colour online.]

Fig. 14. Error in GA-MLP algorithm. [Colour online.]
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Conclusions
The main contribution of this paper lies in the development of

a novel automated method as a part of a big material management
system (MMS) to generate optimized material delivery schedule
that can be used as a guide for contactors or material profession-
als in procuring material with the least cost and without early,
late, excess and insufficient purchasing. The proposed method
can make trade-offs and optimize balance among elements of
material cost and can also consider the dynamic nature of the
construction projects through following up the progress reflected
in the last up-to-date schedule. In addition to profiting from the
capabilities of GA as a greedy optimization engine, practicality
and the excellence of the presented method is due to creating
memory for GA by integrating MLP with GA to avoid from getting
stuck to the local minima as the main weakness of GA. In fact, MLP
gives a capacity of inference to GA by regularizing the parameters
using their fluctuation history to be able to jump over the local
minima. Moreover, to facilitate the implementation of the auto-
mated method computer prototype software has been developed
to act as an interface with the user. Validation is done through a
numerical example and the outputs in terms of error value and
total material cost demonstrate the superiority of GA-MLP over
pure GA. In summary, automated GA-MLP method represents a
promising way forward to optimize the delivery and inventory of
construction materials not only in the planning phase but also in
the construction phase.
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